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Abstract. In the context of program verification, we propose a formal frame-

work for proof slicing that can aggressively reduce the size of proof obligations

as a means of performance improvement. In particular, each large proof obliga-

tion may be broken down into smaller proofs, for which the overall processing

cost can be greatly reduced, and be even more effective under proof caching.

Our proposal is built on top of existing automatic provers, including the state-

of-the-art prover Z3, and can also be viewed as a re-engineering effort in proof

decomposition that attempts to avoid large-sized proofs for which these provers

may be particularly inefficient. In our approach, we first develop a calculus that

formalizes a complete proof slicing procedure, which is followed by the devel-

opment of an aggressive proof slicing method. Retaining completeness is impor-

tant, and thus in our experiments the complete method serves as a backup for

the cases when the aggressive procedure fails. The foundations of the aggressive

slicing procedure are based on a novel lightweight annotation scheme that cap-

tures weak links between sub-formulas of a proof obligation; the annotations can

be inferred automatically in practice, and thus both methods are fully automated.

We support our theoretical developments with experimental results, which show

significant improvements in the verification of complex programs, where richer

specifications are often captured via loosely connected static properties.

1 Introduction

A significant challenge in the area of program verification is posed by the ever in-

creasing number and complexity of proof obligations that need to be discharged by

automated theorem provers. To overcome this challenge, a number of previous investi-

gations have considered the approach of “shrinking” the generated proof obligations as

a means of speeding up the solvers. [13] splits the proof obligations based on control

flow to get smaller proofs. [15,21,22] detect and discard information that is not relevant

to the problem at hand, thus streamlining the proof process. When this streamlining

is performed aggressively, the size of the resulting proof obligations may be greatly

reduced, leading to opportunities for significant performance improvement. In this con-

text, an important technique is that of proof caching [10], which reuses proof results

when multiple instances of the same sub-formulas are encountered. While the idea of

proof slicing is not new in the context of automatic theorem provers, we believe that the

procedure is more effectively carried out in the larger scope of program verification. In

this regards, we make new contributions in three key directions, namely (i) the develop-

ment of a formal foundation for proof slicing mechanisms, (ii) a general application of

proof slicing that is prover-independent and tailored to program verification, and (iii) an

annotation scheme that allows a more aggressive application of the mechanism, leading

to improved performance.



A formal foundation in proof slicing is important for providing an avenue towards a

more rigorous investigation into the field. To that end, we first develop a complete cal-

culus for automatic slicing, which serves as a foundation for the implementation of our

tool. Importantly, apart from completeness, this calculus also enjoys properties of con-

vergence and completeness, which are crucial for its trustworthiness, and its potential

for efficient implementation.

One important application area is that of program verification, whereby a typical ap-

proach is to employ a program verifier that processes the code of interest, annotated with

pre/post-conditions, in order to produce a set of proof obligations that are subsequently

passed on to off-the-shelf theorem prover. These proof obligations are fundamentally

of the form P =⇒ Q, whereby each P is an antecedent that captures some current pro-

gram state, while Q is a goal (or assertion) that has to be proven. Since proof slicing

remains complete only when the antecedent is satisfiable, and since satisfiability checks

typically add a non-negligible overhead, existing state-of-the-art theorem provers, with

formula reduction techniques such as relevancy propagation [4], or labelled splitting

[8], do not employ this mechanism. However, with our slicing mechanism placed in-

between the verifier and the theorem prover, we ensure that the satisfiability checks of

antecedents are incremental and with low overhead, which is key to good performance.

As a further improvement, we designed an annotation scheme that captures con-

straint linking properties, that is, variable-sharing dependencies between interpreted

atoms (i.e., constraints) of a proof obligation; this scheme enables an aggressive slicing

procedure. We believe that such an approach allows proof slicing to be viewed as a

modular and extensible mechanism, rather than as a black box with limited functional-

ity. This point is particularly poignant, as a good annotation scheme is also the basis for

effective annotation inference mechanisms. These mechanisms can, in general, be com-

pletely automatic; several examples can be found in the experimental results section.

We summaries our research contributions, as follows:

− A formal and general framework for uniformly describing different proof slicing

mechanisms (Sec. 3). We prove the proposed slicing mechanisms to be both sound

and convergent, in the sense that, while non-deterministic, the framework always

produces the same result for a given input. The immediate application of this

framework is a complete slicing procedure (Sec. 4).

− An annotation scheme for slicing that is suitable for a variety of logics (Sec. 5).

This is aimed at allowing parts of formulas to be identified as carrying information

linking distinct properties. Then, an aggressive proof slicing mechanism can lever-

ages on annotation schemes to obtain further reductions of the proof slices (Sec. 6).

This also creates the opportunity for applying proof caching, which is particularly

effective with smaller-sized proofs.

− An implementation of the both proof slicing mechanisms within an existing au-

tomated program verification system (Sec. 7). Our experiments show compelling

performance gain of about 61% for complete proof slicing, and a further gain of

74% for aggressive proof slicing (see Fig. 7).
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2 Proof Slicing for Program Verification

Depending on the context, we shall use the term “slicing” to denote either formula

slicing or proof slicing. Formula slicing is the partitioning of a formula into “slices” –

sub-formulas that group together related constraints. Two slices are said to be disjoint

if they do not share any common variables, otherwise they are said to be overlapping.

Proof slicing is the partitioning of a proof obligation into smaller sub-proofs to reduce

the proof’s complexity, thus improving performance of discharging proofs.

In the context of program verification, there are typically two major kinds of proof

obligations, namely: (i) Entailment checking, of the form P ⊢ Q and (ii) Unsatisfia-

bility checking, of the form UNSAT(P ) or P ⊢ false. For unsatisfiability checking,

the proof slicing mechanism partitions the initial formula P into a set of disjoint slices

{P1, . . . , Pn} whereby P↔P1∧ · · · ∧Pn, and then incrementally applies unsatisfiabil-

ity checks on some of these slices, i.e., the slices that have been recently modified since

the last unsatisfiability checks.

For entailment checking, proof slicing is the division of an initial, large entailment

formula into smaller ones, obtained by slicing the original formula’s antecedent with

respect to each of its consequent. Given an antecedent P and a conjunctive consequent

Q1∧· · ·∧Qn, we partition P into possibly overlapping slices {P1, . . ., Pn} such that

each slice Pi is sufficient to prove the corresponding consequent Qi. That is, the orig-

inal entailment is replaced by a set of smaller entailments {Pi ⊢ Qi}ni=1. Importantly,

this slicing step assumes that the sequent’s antecedent is satisfiable, i.e., it has been sub-

jected to a prior unsatisfiability check. Loss of completeness occurs when weakening

an unsatisfiable antecedent into a satisfiable one, and is the main reason for the limited

adoption of this optimization in mainstream theorem provers.

Let consider the implication checks of the form P1∧· · ·∧Pn =⇒ Q1∧· · ·∧Qm.

Without proof slicing, a theorem prover needs to prove the unsatisfiability ofP1∧· · ·∧Pn

∧(¬Q1∨· · ·∨¬Qm). Due to the possibility ofP1∧· · ·∧Pn being unsatisfiable, the prover

could not drop any constraint of the antecedents, unless it is willing to risk a loss of pre-

cision. By explicitly distinguishing between two kinds of proof obligations, our frame-

work can avoid this problem by a prior unsatisfiable checking of the antecedents. More-

over, this distinction also allows us to exploit more aggressive pruning of irrelevant

constraints from the antecedents with a novel annotation scheme (see Sec. 5).

Let us demonstrate how proof slicing can be applied to help with verifying the code

snippet in Fig. 1(a). The pre- and post-conditions are provided by the assume and assert

statements, respectively. To prove the total correctness of this program, we use the loop

invariant x=2y ∧ n≥0 for partial correctness proof, and the variant n as a well-founded

measure for termination proof. The set of generated verification conditions are shown

in Fig. 1(b). Observe that in these verification conditions, the constraints of x and y

and the constraints of n are disjoint. As a result, they can be proven independently by

the proof slicing mechanism, resulting in simpler proof obligations. For example, the

verification condition VC4 can be split into two separate entailments

VC4a : x=2y ⊢ x+2=2(y+1) VC4b : n≥0 ∧ n>0 ∧ n=N0 ⊢ n−1≥0 ∧ n−1<N0

by partitioning the antecedent into two slices (i) x=2y and (ii) n≥0 ∧ n>0 ∧ n=N0. Prior

to the entailment checks, each new antecedent is subjected to a satisfiability check, if
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1 : assume(n ≥ 0);
2 : x = 0; y = 0;
3 : while (n > 0) {
4 : x = x+ 2;
5 : y = y+ 1;
6 : n = n− 1; }
7 : assert(x = 2 ∗ y ∧ n = 0);

Inv(x, y, n) ≡ x=2y ∧ n≥0

VC1 : x=0 ∧ y=0 ∧ n≥0 ⊢ Inv(0, 0, n)
VC2 : Inv(x, y, n) ∧ ¬(n>0) ⊢ x=2y ∧ n=0

VC3 : Inv(x, y, n) ∧ n>0 ⊢ n≥0

VC4 : Inv(x, y, n) ∧ n>0 ∧ n=N0

⊢ Inv(x+2, y+1, n−1) ∧ n−1<N0

(a) (b)

Fig. 1. A code snippet and its verification conditions for total correctness proof

its slice has changed when compared to an earlier program point. We note that only

formula slice (ii) has changed, with its invariant strengthened by the extra constraints

n>0 ∧ n=N0. Thus, for VC4, we only need to check the satisfiability of the slice (ii),

instead of the whole antecedent.

In summary, the division of proof obligations into two classes, of entailments and

unsatisfiability checks, both of which benefit in performance from proof slicing, dis-

tinguishes our work from the techniques employed in current theorem provers. In en-

tailment checks, the size of the antecedent can be greatly reduced when subjected to

a prior unsatisfiability check. A similar mechanism is used for unsatisfiability checks,

where only changed slices need be re-checked. Without this early analysis on the poten-

tial satisfiability of antecedents, current theorem provers would have to process much

larger sets of constraints1 when discharging proof obligations produced by a verification

system.

3 A Framework for Proof Slicing

The starting point of our formalization is that of entailment or unsatisfiability obliga-

tions whose left hand side is an unquantified conjunction of constraints and uninter-

preted predicates. For reasons of simplicity, we shall confine our presentation to un-

quantified formulas; the system is, nevertheless, capable of handling quantifiers. In-

formally, the slicing mechanism will preprocess the input by always floating outwards

the constraints that appear under quantifiers but are independent of the corresponding

quantified variables, and treat the remaining quantified constraints as atomic.

(∧N)
Xi0=X ′

j0∧
i
Xi ∨

∧
j
X ′

j →֒ Xi0∧(
∧

i6=i0
Xi ∨

∧
j 6=j0

X ′
j)

(∧R)
P ⊢ Q1 P ⊢ Q2

P ⊢ Q1 ∧Q2

(∨L)
P1 ⊢ Q P2 ⊢ Q

P1 ∨ P2 ⊢ Q

Consequently, we consider a

first-order language with equal-

ity and interpreted function sym-

bols. The atoms of the language

are formed in the usual way, and

denote constraints, i.e., predicates

that have a fixed interpretation with respect to an external automated reasoning tool.

Sequents are denoted by P ⊢ Q, where P and Q are formulas. Our slicing mechanism

is specified by the rules in Fig. 2, and works by taking in a sequent, and outputting a set

1 A theorem prover might group relevant constraints into classes, such as congruence classes in

the theory of equality, or classes of different theories in the Nelson-Oppen theory combination,

or more generally, classes of constraints which share some common symbols.
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[SPLIT−E1]

SPLIT(∅) = ∅

[SPLIT−E2]

SPLIT(P ) = R P1 = {Q ∈ R | ∃β ∈ Q.SAMESLICE(α, β)}
P2 = {Q ∈ R | ¬∃β ∈ Q.SAMESLICE(α, β)}

SPLIT({α} ∪ P ) = P2 ∪ {{α}∪
⋃

X∈P1
X}

[GETCTR−E1]

GETCTR0(Q,PS) = ∅

[GETCTR−E2]

{S ∈ PS | ISRELEVANT(Q,S)} = ∅

GETCTRn(Q,PS) = ∅

[GETCTR−E3]

S1 = {S ∈ PS | ISRELEVANT(Q,S)}
R =

⋃
X∈S1

X R′ = GETCTRn−1(R,PS \ S1)

GETCTRn(Q,PS) = R ∪R′

[P−ENTAIL]
SPLIT({Pi}

m
i=0) = PS

GETCTRn(Q,PS)⇒Q
∧m

i=0
Pi ⊢ Q

[P−UNSAT]
SPLIT({Pi}

m
i=0) = PS

∃X∈PS · GETCTRn(X,PS)⇒false

UNSAT(
∧m

i=0
Pi)

Fig. 2. Framework for Proof Slicing Mechanisms

of sliced sequents that are meant to be discharged by off-the-shelf provers. However,

the input sequent must first undergo a pre-processing stage with the beside rewrite rule

(∧N) and two structural rules (∧R) and (∨L), which yields a set of sequents in a form

where the effect of the slicing rules in Fig. 2 is maximized, while retaining complete-

ness. The result of this decomposition is a set of sequents whose LHS is a conjunctive

formula and RHS is either a disjunctive or atomic formula. However, to avoid increas-

ing the number of sub-sequents when these rules are applied, that may lead to some

performance loss, rule (∧N) should take precedence over rules (∧R) and (∨L), if ap-

plicable, and rule (∧R) can be stopped early if the pair of conjunctive consequents in

the RHS share the same set of variables.

We distinguish between two calculi: a complete slicing calculus, and an aggressive

slicing calculus. Both calculi formalize mechanisms for partitioning the conjuncts of a

sequent, yielding sets of smaller sequents whose discharge is sufficient for establishing

the proof of the original sequent. The assumption here is that the total effort of proving

the set of smaller sequents by means of external provers is, in general, lighter than

the effort of proving the original sequent by the same means. In the optimal case, the

application of slicing decomposes the entailment P1 ∧ . . . ∧ Pn |= Q into several sub-

formulas, of the form
∧

P∈Xi
P |= Q, such that the sets Xi satisfy three properties: (i)

inclusion: ∀i.Xi⊆{P1, . . . , Pn}, (ii) relevance: all Xi constraints are relevant to Q, i.e.,

∀R.R ∈ Xi →
∧

P∈Xi\{R} P 2 Q and (iii) correlation: for each pair of constraints

P, P ′ ∈ Xi, there exists a chain P = P1, . . . , Pk = P ′ such that every two consecutive

constraints Pj , Pj+1 are overlapping. Similarly, an unsatisfiability check for a formula

P1 ∧ . . . ∧ Pn is sliced into several unsatisfiability checks for
∧

P∈Xi
P such that Xi

satisfies the inclusion and correlation properties.
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Unfortunately, this formulation is not practical, as even establishing the relevance

for a given slice is costly, let alone discovering the slices. Our proposal relies on a

more syntactic formulation for the relevance and correlation properties, by using two

meta-predicates, ISRELEVANT and SAMESLICE, as approximations of the relevance

and correlation tests. The actual definitions dictate the slicing strategies each calculus

uses. In the following sections, we expand more on their formulation and usage.

The complete and aggressive slicing calculi share the set of rules given in Fig. 2,

which we shall call the slicing framework and differ in the definitions used for the two

meta-predicates. Specifically, to obtain the complete (or aggressive) slicing calculus,

we add the rules in Fig. 3 (or in Fig. 5, resp.) to the framework. We shall discuss the

framework in the remainder of this section, and we shall devote Sec. 4 and 6 to each of

the two calculi.

The conjunct partitioning procedure SPLIT calculates PS, a set of slices, from a set

of conjuncts. Each slice is either extended with a new conjunct or not, in accordance

with the SAMESLICE meta-predicate. This meta-predicate’s role is to establish if two

conjuncts should be kept in the same slice or not. Intuitively, it works by checking

how information is shared between its two arguments. The result of applying the SPLIT

relation to a formula P is a set of sets of constraints that represent the partitioning into

slices of P . Each set of constraints can be interpreted as a formula that is formed by a

conjunction of its constraints. Propertywise, we have:

⋃
SPLIT(P )=P ∧ (∀X,Y ∈SPLIT(P )·X 6=Y →X∩Y={})

The formulation of [SPLIT−E2] allows for arbitrary slicing decisions from the pick-

ing of α. Nevertheless, the slicing mechanism needs to be convergent, that is, to yield

the same set of sliced sequents upon termination. Slicing convergence can be ensured

by requiring the rewrite system formed by [SPLIT] to be confluent. In the following

sections, we shall investigate convergence properties for the complete and aggressive

slicing calculi.

Another operation of interest is the computation of relevant slices for a given for-

mula from a set of slices. [GETCTR−E3] and [GETCTR−E2] describe a family GETCTRn

of such functions that differ only in the exhaustiveness of the relevance computation. All

start by picking the slices that are in the ISRELEVANT relation with the input formula

Q. This step can be repeated using each of the previously selected slices as input for

the next iteration. Such a refinement is important because, depending on the actual def-

inition used for SAMESLICE, a single step might not be sufficient to gather all relevant

constraints2. The default GETCTR function to use is GETCTR1, but we can gradually

increase its coverage through GETCTR2, GETCTR3, . . ., if needed. This family of op-

erators satisfies the following two properties

(i) GETCTRn(Q,PS) ⊆ PS (ii) GETCTRn(Q,PS) ⊆ GETCTRn+1(Q,PS)

Continuing on with the description of the slicing rules in Fig. 2, the rule [P−UNSAT]
defines slicing for unsatisfiability obligations. The formula P is first partitioned, and

then a search is performed for an unsatisfiable slice. Each slice is considered together

2 Such is the case for the aggressive slicing calculus with an annotation scheme that will be

introduced later.
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with its relevant counterparts as computed by GETCTRn. The ⇒ notation signifies the

invocation of an external prover.

Similarly, [P−ENTAIL] defines the treatment of entailment obligations. The rule

prescribes partitioning of the antecedent and the consequent, pairing consequent slices

with relevant antecedent slices, and enforcing the implication relation on the result-

ing pairs. The [P−ENTAIL] rule corresponds to the conjunction introduction rules of

Gentzen’s sequent calculus [3]. Intuitively, a sequent with conjunctions on the right

hand side can be split into separate sequents, each retaining one conjunct. Similarly,

sequents with conjunctions on the left hand side can have any number (desirably, all but

one) of conjuncts discarded. We state the lemma for soundness as follows

Lemma 1 (Soundness). All sequents proven using the rules of the slicing framework

are true.

Proof Sketch: Rule [P−UNSAT] is a syntactic conversion of a unsatisfiability obligation

into an implication obligation. Rule [P−ENTAIL] is an instance of conjunction intro-

duction rule of the sequent calculus [3]. Thus, every proof of the slicing framework is a

proof of the sequent calculus, and consequently, the slicing framework rules are sound.

✷

4 Complete Proof Slicing

In this section we introduce a completely automatic slicing mechanism. This mecha-

nism uses the slicing framework rules given in Fig. 2, together with the meta-predicates

SAMESLICE and ISRELEVANT given in Fig. 3. Essentially, this mechanism produces

slices whose sets of free variables are disjoint. This is based on the idea that if a hypoth-

esis and the conclusion of a proof obligation have disjoint sets of free variables, then

the hypothesis cannot be directly contributing to the proof of the conclusion, and can

thus be discarded.

[CS−CORRELATION]
SAMESLICE(P1, P2) = V(P1) ∩ V(P2) 6= ∅

[CS−RELEVANCE]
ISRELEVANT(Q,P ) = V(Q) ∩ V(P ) 6= ∅

Fig. 3. Complete Slicing Mechanism

Whenever two conjuncts of the hy-

pothesis share free variables, we say that

they are correlated, and under the current

slicing scheme, they should belong to the

same slice. This is reflected in the rule

[CS−CORRELATION], where the meta-

predicate SAMESLICE is defined to keep

two conjuncts together if their sets of free

variables are correlated. Here, the symbol V denotes a function that returns the set of

free variables from its input.

Similarly, if a conjunct in the hypothesis shares variables with the consequent, we

say that the conjunct is relevant to proving the conclusion. The definition of the meta-

predicate ISRELEVANT given in the rule [CS−RELEVANCE] captures precisely this

idea. We have taken the approach of utilizing these two rules to make our proof slic-

ing framework more general. In the next section, we shall define a new variant of our

proof slicing framework with annotation guidance, by simply redefining these two rules,

without having to change any of the rules in Fig. 2.
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In the previous section, we mentioned that [SPLIT] rules are expected to be con-

vergent. This can be ensured by the convergence of our calculi. The following lemma

substantiates this claim.

Lemma 2. [SPLIT] with [CS−CORRELATION] is confluent.

Proof: Firstly, due to the set intersection operator being symmetric, the

[CS−CORRELATION] relation is symmetric as well. Secondly, note that the [SPLIT]
rule considers every constraint in the initial constraint set. The only possibility for the

outcomes to be different is if the order is important. However due to the symmetry of the

[CS−CORRELATION] and the fact that P1∪P2 covers all the elements in the partially

constructed slicing R, the partitioning ensures that all previously considered constraints

that are in the [CS−CORRELATION] relation with the current constraint will be part of

the same slice. ✷

An important property of the complete slicing mechanism is that it does not alter the

level of completeness of the underlying solver. The slicing mechanism converts prov-

able sequents into new sequents that are still provable in the same logic, provided that

the antecedent of the sequent at hand is satisfiable. To formalize this claim, we assume

that the underlying prover is formalized as a calculus LKT , obtained from Gentzen’s

calculus LK [3], augmented with a theory T capable of handling the interpreted sym-

bols of the language. Moreover, we assume that the axioms of T do not discharge se-

quents of the form P ⊢ Q when V(P ) ∩ V(Q) = ∅.

Lemma 3 (Relative completeness). Let P ′ ⊢ Q be the sequent obtained by applying

the complete slicing rules to the sequent P ⊢ Q, where Q is atomic. Let LKT be a

sequent calculus obtained from LK by augmenting it with rules from a theory T that

can handle the interpreted symbols of our formulas. If P ⊢ Q is provable, and P is

satisfiable in LKT , then P ′ ⊢ Q, is also provable in LKT .

Proof: The slicing mechanism will first convert P into the conjunction P ′ ∧ P ′′, where

V(P ′′) ∩ V(Q) = ∅. It can then be decided that P ′′ can be discarded, and P ′ ⊢ Q is

retained as a viable proof obligation. At this point, we have to make use of the statement

that a sequentR1∧R2 ⊢ R can be reduced to R1 ⊢ R if V(R2)∩V(R) = ∅, and R1∧R2

is satisfiable. This statement can be proved by structural induction on the proof tree of

R1 ∧ R2 ⊢ R. Based on this statement, repeated eliminations of irrelevant hypotheses

would not change the LKT provability of P ′ ⊢ Q, which establishes the original claim.

✷

5 An Annotation Scheme for Proof Slicing

The complete proof slicing mechanism is particularly effective in the case of formulas

that can be neatly partitioned into disjoint slices. It is, however, not as effective in the

presence of constraints that seemingly link together sub-formulas that would otherwise

be disjoint; for such cases, slicing needs to be applied more aggressively. To highlight

this need, let us now consider a more expressive logic, capable of specifying and verify-

ing heap-manipulating programs, with the possibility of generating more complex proof

obligations. Consider the following definitions of a binary tree node and an inductive

predicate that specifies an AVL tree rooted at its first argument and height-balanced.
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data node { int val; node left; node right; }
avl(root, n, h, B) ≡ root=null∧n=0∧h=0∧B={}
∨ ∃v, p, q, n1, n2, h1, h2 · root7→node(v, p, q)
∗ avl(p, n1, h1, B1) ∗ avl(q, n2, h2, B2)
∧ n=1+n1+n2∧h=1+max(h1, h2)∧−1≤h1−h2≤1

∧ B={v}∪B1∪B2∧(∀a∈B1·a<v)∧(∀b∈B2·v≤b)
inv n≥0 ∧ h≥0 ∧ n≥h;

This predicate captures four

aspects of the AVL tree property.

Parameter root is a pointer to

the root of the tree, whereas n, h,

and B (and their subscripted vari-

ants) capture, respectively, num-

bers of nodes in trees, their heights, and their sets of values. The constraint

−1≤h1−h2≤1 states that the tree is nearly height-balanced, whereas the quantified set

constraint (∀a∈B1·a<v)∧(∀b∈B2·v≤b) enforces the binary search tree property. The

formula specified after the inv keyword denotes the invariant property that holds for all

instances of the predicate. Moreover, the separating conjunction operator ∗ (cf. [18]) is

used to concisely capture the memory disjointness property.
To prove an invariant of the AVL predicate (e.g., n≥0), the entailment proof (e.g.,

avl(x, n, h, B) ⊢ n≥0, resp.) can be discharged inductively by applying the definition
of the predicate avl. For example, the below LHS is the resulting proof obligations (af-
ter each points-to 7→ is approximated by a non-null constraint, and each predicate is ap-
proximated by its invariant) while RHS is the same two entailments after applying com-
plete proof slicing. For brevity, we use ni, hi≥0 to denote the conjunction ni≥0∧hi≥0.

x=null ∧ n=0 ∧ h=0 ∧ B={} ⊢ n≥0

x6=null ∧ (n1, h1≥0∧n1≥h1)∧(n2, h2≥0∧n2≥h2)
∧ n=1+n1+n2

∧ h=1+max(h1, h2)∧−1≤h1−h2≤1

∧ B={v}∪B1∪B2∧(∀a∈B1·a<v)∧(∀b∈B2·v≤b)
⊢ n≥0

n=0 ⊢ n≥0

(n1, h1≥0∧n1≥h1)∧(n2, h2≥0∧n2≥h2)
∧ n=1+n1+n2

∧ h=1+max(h1, h2)∧−1≤h1−h2≤1

⊢ n≥0

Though sound, the second (sliced) entailment is unnecessarily verbose due to the

presence of constraints n1≥h1 and n2≥h2 which act to link the constraints relating

to size and height for the avl predicate. We refer to such constraints as weakly link-

ing constraints, and propose to deploy a more aggressive proof slicing mechanism that

can selectively disregard the relationship between variables occurring in such linkages.

Though this decision may suffer from a risk of losing completeness, it would allow

for a more aggressive application of the slicing mechanism. Applying this mechanism,

we are able to obtain the following more compact entailment proof (e.g., n1≥0 ∧ n2≥0
∧ n=1+n1+n2 ⊢ n≥0). To provide a systematic way to deal with weakly linking con-

straints, we propose the following annotation scheme.

Informal Definition 1 (Weakly Linking Constraint) A constraint φ can be annotated

as a weakly linking constraint φ# if it is a weak constraint, such as inequality con-

straint (e.g., ≤ or 6=), that links together multiple variables from disjoint properties.

In addition, for proving the invariant n≥h of the AVL predicate, our annotated proof

slicing mechanism would keep the constraints related to both the size and the height

properties and their weakly linking constraints, as follows:

n1, n2≥0 ∧ h1, h2≥0 ∧ (n1≥h1)# ∧ (n2≥h2)#
∧ n=1+n1+n2 ∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1 ⊢ n≥h

Aside from weakly linking constraints, we propose to support two additional kinds

of weak linkages, namely:
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Informal Definition 2 (Weakly Linking Variable) A variable occurrence v can be

annotated as a weakly linking variable v# if it does not belong to any particular prop-

erty, but appears in the constraints of multiple distinct properties.

Informal Definition 3 (Weakly Linking Expression) An expression e can be anno-

tated as a weakly linking expression e# if its definition has been captured by another

variable, in a constraint such as v=e. This variable (or property) is only weakly linked

with variables inside the linking expression.

To showcase the need for weakly linking variables, we introduce an additional pred-

icate that describes a binary tree with only positive elements. This new definition will

capture two new properties: the set of elements B and the sum of the elements s in the

tree. Such a predicate can be precisely defined as:

btree(root, B, s) ≡ root=null∧ s=0 ∧ B={}
∨ ∃v, p, q, B1, B2, s1, s2 · root7→node(v, p, q)

∗ btree(p, B1, s1) ∗ btree(q, B2, s2) ∧ v>0

∧ s=s1+s2+v# ∧ B=B1∪B2∪{v#}
inv s≥0 ∧ (∀b∈B·b≥0);

With this definition, the two properties, although distinct, seem inseparable. None of

the constraints can be truly considered weakly linking. A slicing algorithm that detects

only weakly linking constraints will fail. This is due to a different kind of link between

the two properties. In this example, the link is not established through a particular con-

straint but through the variable v. Allowing linkage annotations to appear not only on

constraints, but on individual variables as well, yields a refinement of the proof slicing

algorithm, capable of better partitioning. For example, in proving:

btree(x, B, s) ∧ x 6=null ⊢ s>0,

the initial proof obligation will be:

x 6=null∧ v>0 ∧ B=B1∪B2∪{v#} ∧ (∀a∈B1·a≥0)
∧ (∀b∈B2·b≥0) ∧ s=s1+s2+v# ∧ s1, s2≥0 ⊢ s>0

This obligation can be sliced by eliminating both the constraints on the bag of elements,

as well as the constraints connected purely via weakly linking variables, thus obtaining

a cleaner implication proof, devoid of set constraints, as follows:

v>0 ∧ s=s1+s2+v# ∧ s1, s2≥0 ⊢ s>0

Furthermore, in proving:

btree(x, B, s) ⊢ ∀c∈B·c≥0,

we have the following initial proof obligation for the inductive case:

x 6=null∧ v>0 ∧ B=B1∪B2∪{v#} ∧ (∀a∈B1·a≥0)
∧ (∀b∈B2·b≥0) ∧ s=s1+s2+v# ∧ s1, s2≥0 ⊢ ∀c∈B·c≥0

10



With the guidance obtained from weakly linking variables, our annotated proof slicing

yields a more concise inductive proof:

v>0 ∧ B=B1∪B2∪{v#} ∧ ∀a∈B1·a≥0 ∧ ∀b∈B2·b≥0 ⊢ ∀c∈B·c≥0

Lastly, let us consider yet another scenario where weakly linking expressions are

helpful. Consider a different AVL predicate that tracks the height and balance factor of

its height-balanced sub-trees.

avl(root, h, b) ≡ root=null∧ h=0 ∧ b=0
∨ ∃v, p, q, b1, b2, h1, h2 · root7→node(v, p, q)

∗ avl(p, h1, b1) ∗ avl(q, h2, b2) ∧ b=(h1−h2)#
∧ h=1+max(h1, h2) ∧ −1≤b≤1

inv h≥0 ∧ −1≤b≤1;

Here, the constraint b = (h1−h2)# bears a weak linkage between the balance factor

and the height property. However, this type of weak linkage is different, in the sense

that b is related to constraints containing the expression h1−h2, but not to constraints

containing the individual variables h1 and h2. In proving:

avl(x, h, b) ∧ x 6=null∧ b=0 ⊢ h1−h2 6=1

we would initially obtain the following proof obligation:

x 6=null∧ b=0 ∧ b=(h1−h2)# ∧ h1, h2≥0 ∧
h=1+max(h1, h2) ∧−1≤b≤1 ⊢ h1−h2 6=1

We observe that the expression h1−h2 has already been captured by the balance factor

property as the value of variable b. By tracking this information and exploiting it, we

can deduce that the property relevant to our goal is the balance factor, rather than the

constraints related to the height property. Applying annotated proof slicing, we can

obtain a much simpler proof obligation:

b=0 ∧ b=(h1−h2)# ∧ −1≤b≤1 ⊢ h1−h2 6=1

We note here that each weakly linking annotation is added only once (mostly in

predicate definitions and specifications), with the intent of being used across the entire

program verification process.

In summary, the key points on the use of weakly linking annotations in support

of more aggressive proof slicing are: (i) Proof obligations containing multiple weakly

linked properties are commonly generated from richer specifications. (ii) The use of

weakly linking annotations leads to loosely connected partitions that can be split when

necessary, thus easily regaining the performance benefits of proof slicing. (iii) Multiple

instances of the same (small) slice are frequently encountered in practice, which are

shown in our experiments; thus, the use of proof caching would yield further perfor-

mance gains.

Moreover, in a goal driven approach, it is possible to select only a small set of

(loosely connected) partitions that have a higher chance of being relevant for the current

11



proof obligation. Should this attempt fail, the algorithm can retry with a broader set

of partitions, preserving the precision of the approach. Since failure rate is small in

practice, this aggressive approach yields a significant improvement in efficiency. In our

experiments, we have obtained multi-fold reductions in prover execution times.

6 Aggressive Proof Slicing

In this section, we propose a novel annotation mechanism, capable of pinpointing loca-

tions where proof slicing can be applied more aggressively.

6.1 Annotation Scheme

As mentioned in Sec. 3, the target of our framework is a first-order language with equal-

ity and interpreted function symbols. This language, more precisely described in Fig. 4,

imposes no restrictions on the versatility of our framework. Without loss of general-

ity we can safely assume that the annotations described in Sec. 5 will be transparently

translated into annotations in our target language.

6.2 Annotation Reduction

π ::= αL | ¬αL | π1∧π2

αL ::= α | (α)# vL ::= v | v#
α ::= true | fL(v

∗
L) | vL=fL(v

∗
L) | vL1=vL2

fL(v
∗
L) ::= f(v∗L) | (f(v

∗
L))#

where # is the annotated slicing label;
α denotes atomic predicates;
π denotes pure formulas; v is a variable;
vL is a variable with or without # label;
fL is an interpreted symbol, possibly labeled;

Fig. 4. Support Logic with Annotation Scheme

To simplify the formulation of
our core calculus, we shall restrict
our annotations for proof slicing
to only weakly linking variables.
Through a preprocessing step, we
can transform each weakly linking
constraint and each weakly link-
ing expression into weakly link-
ing variables, by transferring the
weakly linking annotation to the
free variables of a linking con-
straint or linking expression. Such

a translation, named red, can be formalized as follows:

redβ(π1 ∧ π2) →֒ redβ(π1)∧redβ(π2)
redβ(¬αL) →֒ ¬redβ(αL)
redβ((α)#) →֒ redtrue(α)
redβ(true) →֒ true

redβ(f(v
∗
L)) →֒ f(redβ(v

∗
L))

redβ((f(v
∗
L))#) →֒ f(redtrue(v

∗
L))

redβ(fL(v
∗
L)) →֒ fL(redβ(vL)

∗)
redβ(vL=fL(v

∗
L)) →֒ redβ(vL)=fL(redβ(vL)

∗)
redβ(vL1=vL2) →֒ redβ(vL1)=redβ(vL2)
redβ(v#) →֒ v#
redtrue(v) →֒ v#
redfalse(v) →֒ v

With this translation scheme, the free variable set of each constraint is divided into

two disjoint sets, namely weakly and strongly linking variables. The set of weakly link-

ing variables of a constraint can be computed by a simple function VW over the struc-

ture of the constraint α that picks up all (weakly) annotated variables, VW(v#) = {v}
while the set of strongly linking variables of a constraint α is its complement, namely

VS(α) = V(α) \ VW(α), where V(α) returns the free variable set (without annotation)

of the constraint α.
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The translation scheme described above converts away all non-variable annotations.

Nevertheless, a weakly linking constraint can still be distinguished from a constraint

with weakly linking expressions or a constraint with a mix of weakly and strongly

linking variables. At this point, we can make the following general observations: (i)

a strongly linking constraint expresses knowledge specific to one property, and does

not have any weakly linking variables; (ii) a weakly linking constraint encodes only

weakly linking information, and thus has an empty set of strongly linking variables;

(iii) constraints with weakly linking expressions or some weakly linking variables will

express some relation between weakly linking entities and some other variables; thus

neither set of weakly or strongly linking variables is empty. These observations allow

us to support a uniform way of handling different kinds of linkages using a simpler

variable-only annotation scheme.

6.3 Slicing Criterion

[AS−CORRELATION]

SAMESLICE(P1, P2) =
VW(P1) = VW(P2) ∧
VS(P1) ∩ VS(P2) 6= ∅

[AS−RELEVANCE]

ISRELEVANT(Q,P ) =
(V(Q) ∩ VS(P ) 6= ∅) ∨
(VS(P ) = ∅ ∧ VW(P ) ⊆ V(Q))

Fig. 5. Annotated Slicing Mechanism

To take advantage of weakly

connected components, our ag-

gressive slicing mechanism will

create partitions (or slices) by

ignoring links that are due

to solely weakly linking vari-

ables. This is achieved by al-

lowing two constraints to be in

the same slice if they satisfy

the following two conditions: (i) they share one or more strongly linking variables,

and (ii) they have the same set of weakly linking variables. These two conditions are

captured in a new definition for the SAMESLICE meta-predicate in Fig. 5. According to

this definition, each weakly linking constraint will be kept as a separate slice. Further-

more, two constraints that share the same set of weakly linking variables will only be

kept in the same slice if they share one or more strongly linking variables.

The following lemma establishes the convergence of our splitting procedure in the

presence of the new meta-predicate.

Lemma 4. [SPLIT] with [AS−CORRELATION] is convergent.

Proof Sketch: Since [AS−CORRELATION] is a symmetric relation, we can make a sim-

ilar argument to the one used for the convergence of complete slicing. ✷

6.4 Relevance Criterion

In the case of complete proof slicing, the constraints referring to a given property are

spread across multiple slices. To have a good balance between precision and efficiency,

we should ideally find the smallest set of hypotheses that ensure the success of the

entailment check, whenever possible. To properly exploit the weakly linking annota-

tions, we propose a two-step approach to finding relevant hypotheses. First, we employ

aggressive slicing, which uses GETCTR2, in order to obtain constraints that are most
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closely linked to the given goal. In case this first step fails, we may apply a subsequent

exhaustive search step in order to identify additional constraints using a higher-level

operator GETCTRn, where n is the cardinality of our set of slices. Using n as a limit,

our aggressive proof slicing mechanism has a similar behavior to that of complete proof

slicing. We can formalize these two steps as instances of the slicing framework defined

in Sec. 3.

Given a goal Q, the aggressive slicing mechanism would consider a slice relevant if

either of the following holds:

1. It contains strongly linking variables that overlap with the free variables of Q.

2. It contains weakly linking constraints whose set of variables are entirely subsumed

by the set of free variables of Q.

In order to collect these two categories of constraints, the calculus need only use

GETCTR2 in the aggressive search mechanism. The formalization of the aggressive

search relevance check is given by [AS−RELEVANCE] in Fig. 5. The conditionVS(P ) =
∅ in the meta-predicate ISRELEVANT indicates that P is a slice of a weakly linking con-

straint.

6.5 Annotation Inference

The current paper has investigated a foundation for proof slicing through a lightweight

annotation scheme. The focus, thus far, for this paper has been on allowing the annota-

tion scheme to support efficient and effective proof slicing process, so that our program

verification system would have better scalability when it is made to work with existing

state-of-the-art provers.

In this section, we shall briefly consider the possibility of automatically inferring an-

notations that could support aggressive proof slicing. We consider annotation inference

mechanisms to be orthogonal to our current contributions, that could be more system-

atically investigated in the near future by us or others. To persuade on the feasibility of

pursuing in this direction, we outline two lightweight annotation inference mechanisms

that could support a significant degree of aggressive proof slicing automatically.

The first mechanism is based on the observation that constraints pertaining to dif-

ferent theories (e.g., linear arithmetic, arrays, and sets) are independent and should be

kept separate. The rationale for this approach is that constraints of different theories

will most likely require separate provers. Therefore, it is possible to separately identify

variables that appear in constraints of multiple theories and annotate these variables as

weakly linking variables. Such annotations allow the effective delimitation of theory

specific proof slices. To illustrate this approach, let us take the formula:

B=B1∪B2∪{v} ∧ (∀a∈B1·a≥0) ∧ (∀b∈B2·b≥0)
∧ s=s1+s2+v ∧ s1, s2≥0 ∧ v>0

The inference would identify variable v as appearing in both arithmetic and set con-

straints. Consequently, its appearances in these constraints (in bold) are marked as

weakly linking variables, thus allowing a clean split into set-based proofs and arithmetic-

based proofs.

14



The second mechanism centers on the observation that, most often, inequality con-

straints exhibit weaker links as compared to equality constraints. If the sequent of inter-

est has, for instance, multiple equality and inequality constraints, it is often preferable

to create groups of correlated equality constraints, and mark inequality constraints with

variables from two different groups as weakly linking.

h=1+max(h1, h2) ∧−1≤h1−h2≤1 ∧ h1, h2≥0 ∧
n1≥h1 ∧ n2≥h2 ∧ n=1+n1+n2 ∧ n1, n2≥0

For example, given the previous formula, two sets of related constraints will be identi-

fied: one pertaining to n, n1, n2 and one to h, h1, h2. This partitioning in turn allows all

the inequalities between n’s and h’s to be annotated as weakly linking.

However, the annotations on inequality constraints based on this heuristic might be

redundant, since it is possible that the combination of two inequalities would form a

stronger link of their variables. For instance, with the following formula:

x=y ∧ y≤z ∧ y≥z ∧ z=t

the inference mechanism marks the two constraints y≤z and y≥z as linking, ignoring

the potential simplification into the equality y=z. Nevertheless, these extra annotations

do not affect the completeness of the search process. For example, given the above an-

notated formula as premise for proving x=t, the weakly linking constraints that would

be missed in the first phase (by GETCTR1) can be collected during the second phase

(by GETCTR2) of the aggressive search mechanism. As a result, GETCTR2 is enough

to ensure the completeness of aggressive slicing for this example. In our experiments,

we also mark each disequality of form a 6=b as weakly linking.

7 Experiments

We have integrated the proposed proof slicing mechanisms into a separation logic-based

program verification system [17], where proof obligations are soundly approximated

by formulas in heap-free pure logic that can be discharged by off-the-shelf back-end

theorem provers. The theorem provers used in our current evaluation are the Omega

Calculator [20], MONA [11], Reduce/Redlog [7] and Z3 [5]. The proof slicing mech-

anisms are implemented as intermediate layers between the verifier and the theorem

provers, effectively acting as prover-independent pre-processors for the back-end. In

our measurements, we were careful to quantify the sole effect of applying the slicing

procedures on the running time of the theorem provers (including overheads of the proof

slicing mechanisms, if any) and show the relative comparison (on percentage) of tim-

ings by charts. The detailed timings (in seconds) and additional information are given in

Appendix A. For brevity, we use NS, CS and AS to indicate no, complete or aggressive

proof slicing mechanism, respectively.

We used several benchmarks for evaluating the resulting system. The first bench-

mark includes a set of heap-manipulating programs, implementing typical operations

for singly and doubly linked lists, as well as more complex tree data structures such

as AVL and Red-Black trees. The benchmark also includes the BigInt program, which
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Fig. 6. Relative Comparison (%) of CS over NS with various theorem provers.

uses linked list to implement infinite precision integers and their arithmetic operations

as well as the Karatsuba’s fast multiplication method. The program is verified with

non-linear constraints, which currently can only be handled by the Redlog prover. The

second benchmark consists of programs taken from the SIR/Siemens test suite [6] with

some data structures mentioned above and arrays.

Fig. 6 shows the comparison on percentage between the time spent on each under-

lying prover plus slicing overhead when CS is on (indicating by the prover name with

the postfix (c)) and the time spent on the same prover without proof slicing mechanism

(NS) for the first two benchmarks. 3 As can be seen, CS benefits all provers in general,

especially on complex programs (e.g., BigInt and SIR) with over 60% reduction. More-

over, on less scalable provers like Omega, MONA or Redlog, CS helps to reduce about

90% of the total prover time (or 10x faster). Those significant improvements come from

the reduction on proof size for both unsatisfiability and entailment proofs by the effect

of proof slicing. For Z3, the total reduction on the prover time is about 60% despite

its own optimization mechanisms (e.g., the relevancy propagation technique). Because

our proof slicing mechanisms focus on the higher level tasks of checking entailments

and detecting unsatisfiability, they are able to filter out irrelevant constraints more ef-

fectively whenever the relationships between constraints are preserved. Moreover, with

proof slicing, the unsatisfiability checks on the antecedents of entailment proofs are

performed incrementally and non-redundantly, thus bringing more performance gains.

The next set of experiments concerns annotated formulas, and the application of AS.

The inductive predicates of data structures used in this benchmark are augmented with

additional linking constraints that enhance their precision to move towards verification

of full functional correctness but also greatly increase the complexity of the derived

proof obligations. Annotations for those linking constraints are inferred automatically,

via a number of heuristics. For example, each parameter of a heap predicate is regarded

as an independent property, unless it is mutually-dependent on another parameter, lead-

ing to an approach where every constraint between two distinct properties is always

marked as weakly linking. Fig. 7 illustrates the performance benefits of AS over CS in

3 We did not pay attention to the verification overhead because it is almost constant across

different provers with and without proof slicing.
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the relative comparison with NS. It shows that in the presence of more complex spec-

ifications, AS performs better than its complete counterpart. In these examples, proof

obligations with set constraints are discharged by MONA.

The fourth benchmark, called Spaguetti, came from the SLP tool [16]. It includes a

set of heap-based test cases; each of them comprises 1000 randomly-generated, param-

eterized by the number of heap variables, UNSAT checks of the form F ⊢ false with

the success rate about 50%. The SLP tool is an optimized paramodulation prover, hard-

wired to support only the list segment predicate, together with equality and disequality

constraints on heap addresses and thus yielding a very good performance (under 3 sec-

onds for each Spaguetti test case). With the help of AS together with a simple heuristic

that automatically marks each disequality as a weakly linking constraint, our general-

purpose separation logic-based prover is expected to achieve comparable performance

while allowing a much more expressive specification language.
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Fig. 8. Comparison (%) of CS and AS over NS on the Spaguetti Benchmark

with the number of heap variables from 10 to 20 (+ indicates caching used)

Unfortunately, as shown in Fig. 8, while the use of CS helps reduce the prover times

with Z3 (by about 76.2% in total), AS has only little extra effect due to high numbers

of (smaller) proofs generated. To obtain further improvements, we have augmented our

proof slicing framework with a simple proof caching mechanism that memoizes on

string representations of normalized proof obligations. This brought about over 90%

reduction (after including overheads of both caching and slicing) when AS is used; thus

the performance is now comparable to the SPL tool. This outcome is supported by a

much higher hit rate (over 99%) from caching of smaller proofs generated by AS, as

compared to the hit rate from the combination of proof caching and CS. This effective

result highlights the synergistic interplay between the proof caching and AS although

the idea of proof caching is not new. Moreover, with the help of AS, an obsolete prover
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like Omega can catch up the performance of the advanced prover Z3 because the num-

ber of disequalities, which are expensively handled by Omega, is considerably reduced.

To investigate the portability of our proof slicing mechanisms, we have equipped

AS for the Frama-C verification system [23]. For evaluation, we designed a family of

contrived procedures, parameterized by the number of their parameters, that do compu-

tation on these independent variables, so as to illustrate the potential of AS. A version

comprising two parameters is shown in Fig 9. Our AS (without proof caching) is inter-

posed between the Frama-C verifier and the default Alt-Ergo prover. AS is supported by

an annotation heuristic marking simple constraints of the form v=2 as weakly linking

constraints. As can be seen from Fig. 10, the use of AS achieved good performance

gains in conjunction with the default prover. We have also evaluated our proof slicing

mechanism on a set of 20 small examples obtained from the Frama-C distribution, on

which the use of proof slicing did not yield any noticeable gain. It remains our the-

sis that larger, more complex examples would, in general, benefit more from our proof

slicing methods.

void spring2 (int ∗x0, int ∗x1)
/∗@ requires ∗x0>2 ∧ ∗x1>2;

ensures ∗x0=old(∗x0)+2

∧ ∗x1=old(∗x1)+2 ∗/
{ int v = 2;
∗x0=∗x0+v; ∗x1=∗x1+v;
if (∗x0>4) {
∗x0++; ∗x1++;
if (∗x1>4) {
∗x0−−; ∗x1−−; }}}

Fig. 9. A simple contrived procedure
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8 Related Work and Conclusion

The problem of filtering irrelevant information has been studied under different guises

in several research areas. In [12], the authors focus on filtering out non-relevant infor-

mation in knowledge bases. They discuss the concept of free variable independence for

a conservative partitioning scheme and the concept of forgetting constraints, by which

they eliminate irrelevant variables and produce the strongest consequent of the initial

formula containing only relevant variables. However, the lack of an aggressive slicing

mechanism (which in our case was supported by annotating weak links between distinct

properties) leads to higher overheads in both the elimination and the solving phases.

Huang et al. [10] focus on slicing proofs for the infeasibility of counterexamples

generated from a model checking process. The insight of this work is that global proofs

can be sliced into independent proofs of atomic predicates, and memoization can be

used to store the smaller proofs. While the general slicing technique has also been

refined via a myriad of proposals (such as combined with abstract interpretation [21]),
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no mechanism has been proposed to allow a more flexible tradeoff of effectiveness

versus conservatism in the slicing process.

Yet another direction of related research focuses on conservatively slicing formulas

in connected components in order to simplify the satisfiability and entailment checks.

In [1], Amir et al. introduce a methodology for representing large knowledge bases,

namely sets of axioms, as trees of loosely connected partitions. They also define a mes-

sage passing mechanism for reasoning over individual partitions. This has the effect of

maintaining the linking information, but leading to higher overheads.

Simpler schemes, e.g., conservative partitioning, have been proposed for SAT solvers.

The benefits of an union-find approach over the depth first search in identifying parti-

tions are emphasized in [2]. In [24], a hypergraph cut method partitions the problem,

then checks individual partitions and corroborates the results based on the assignments

of the linking variables. In [19], SAT solvers are employed for each subproblem while

delaying the assignments of linking variables to reduce the search space. In contrast

to these methods, our approach refrains from converting implication checks into SAT

checks, thus doing a better job at identifying weak linking constraints, and consequently

yielding smaller proof slices. We also introduce customizable formula slicing capabil-

ities that facilitate the exploration of new strategies. Our experiments shows that the

approach is capable of speed gains without loss of completeness.

Finally, we mention Craig interpolation-based approaches, such as [9], that use in-

terpolation to infer relevant predicates as a way of implementing abstraction refinement

more efficiently. In these approaches, the notion of relevance is encoded in entailments

and detected by an interpolating prover [14]. In contrast, relevance detection in our ap-

proach is largely syntactic, allowing the development of a generic proof slicing frame-

work for automated program verification that would be effective for a broad range of

off-the-shelf theorem provers used as back-end.

Conclusion. We have proposed a formal framework that allows the development of

modular and extensible proof slicing mechanisms. Our proposal has been validated by

an implementation and several experiments. Our technique shows considerable perfor-

mance gains especially when weakly linking constraints are properly identified. Our

aggressive proof slicing mechanism, based on the premise that a simple annotation

scheme is sufficient to highlight weakly linking information, allowed us to develop a

guided proof slicing process with surprisingly good performance. Experiments showed

multi-fold reductions in verification times for each of the state-of-the-art provers used

as back-end. We believe that our proposal is of importance for automated verification

systems that are geared towards full functional correctness, where proof obligations are

not only large and complex but may also be highly intertwined.
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A Detailed Experimental Results

In this section, we provide the detailed numerical data presented by the plots in Fig.

6, 7, 8 and 10 via Table 2, 3, 4 and 1, respectively. Table 2 presents timing measure-

ments (in seconds), with the complete proof slicing mechanism (CS) turned both on and

off, for the first two benchmarks of heap-manipulating programs and SIR/Siemens. The

CS timings also includes the slicing overhead, beside the time spent on each prover.

Moreover, the last two rows of the table show the effect of proof slicing with signifi-

cant reduction on the size of both unsatisfiability and entailment proofs, that brings the

performance improvement.

Table 3 illustrates the performance benefits of aggressive proof slicing (AS) on pro-

grams whose specifications contain weakly linking components. Beside the effective

reduction on prover time by AS, the table also shows that the number of annotated con-

straints in the specifications, which are inferred automatically via some heuristics, is

small because these annotations can be reused across the whole verification process.

Thus, the annotation inference overhead is not noticeable.

Table 4 presents the prover times (in seconds) or the percentage of completed proofs

(with a timeout of 2 seconds for each UNSAT checks) for the Spaguetti benchmark. To

facilitate a fair comparison in the case of timeouts, the estimated time of completing all

1000 tests in each Spaguetti testcase is calculated using:

testimated = (tmeasured − ttimeout × x) + (
ttimeout × n× x

n− x
)

where x and n are the number of timeouts and the total number of runs, respectively.

In this sum, the augend is the actual verification time taken by successful runs, and the

addend is the estimated timing for the timeout cases. In this table, the number of heap

constraints and arithmetic constraints (e.g., disequalities on heap addresses) illustrate

the complexity of the Spaguetti testcases.

Lastly, Table 1 shows the (actual or estimated) verification time (in seconds) with

the 1s-timeout for each proof obligation for the Spring benchmark with Frama-C. The

estimated time for incompleted proofs are calculated by the same formula used in the

Spaguetti benchmark.

Spring # P.O NS Estimated NS AS

2 6 0.3 0.3 0.3

4 20 0.7 0.7 0.7

6 42 14.3 (71.4%) 19.1 1.7

8 72 35.8 (55.6%) 61.4 3.4

10 110 66.0 (45.5%) 138.0 6.34

20 202 124.4 (49.0%) 231.6 23.2

30 602 505.0 (20.6%) 2347.6 261.2

Table 1. Total Verification Times in seconds (and % Proof Obligation (P.O) completed before a

1s-timeout) for the Spring Benchmark with Frama-C.
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Programs LOC
No Slicing (NS) Complete Slicing (CS) Proof Size Reduction (%)

Omega MONA Z3 Redlog Omega MONA Z3 Redlog UNSAT ENTAIL

Heap-Manipulating Programs

AVL Tree 1098 187.4 6698.0 11.4 279.0 6.8 244.6 4.1 34.2 70.8 59.6

Linked List 307 0.5 36.43 0.3 2.7 0.3 2.7 0.2 0.9 65.8 46.6

Sorted Linked List 844 1.6 119.6 1.2 11.7 0.7 6.8 0.5 3.1 65.3 51.3

Doubly Linked List 278 0.9 603.9 0.7 7.7 0.5 4.3 0.4 2.1 70.7 51.5

Complete Tree 225 2.0 85.3 1.2 11.2 1.3 14.7 0.9 6.5 50.2 18.9

Heap Tree 214 32.1 227.0 1.9 46.7 1.1 18.3 0.6 6.5 70.2 58.4

Binary Search Tree 344 0.6 11.5 0.4 3.7 0.2 3.5 0.2 0.9 64.0 45.8

Perfect Tree 166 0.4 3.2 0.3 2.7 0.1 1.6 0.1 0.7 58.5 47.1

Red-Black Tree 1122 5.7 401.5 2.9 43.2 1.3 39.4 0.9 5.7 80.4 64.4

Big Int (w/ Karatsuba mult.) 235 - - - 329.4 - - - 35.0 61.0 37.4

Total / Average: 4833 231.1 8186.4 20.2 737.8 12.4 335.8 7.9 95.6 67.1 54.3

Prover time reduction (%): 94.6 95.9 60.7 87.0

SIR/Siemens Benchmark

printtokens, printtokens2,
2033 - - 22.9 - - - 12.2 - 58.8 29.5

replace, tcas (w/ array)

schedule, schedule2 786 33.6 386.1 16.7 406.1 6.7 8.0 2.0 16.2 83.8 65.0

Total / Average: 2819 33.6 386.1 39.7 406.1 6.7 8.0 14.2 16.2 64.1 37.2

Prover time reduction (%): 80.1 97.9 64.1 96.0

Table 2. Prover Times (in seconds) for Program Verification without and with Proof Slicing mechanisms.

2
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Programs
No Slicing (NS) Complete Slicing (CS) Aggressive Slicing (AS)

(props: size (s), height (h), sets (t) anno. ctrs

balance factor (b), black height(bh)) /total ctrs Z3 MONA Omega Z3 MONA Omega Z3 MONA Omega

AVL(1) (s, h) 1/103 4.9 - 8.1 3.9 - 4.7 1.5 - 1.9

AVL(2) (s, h, b) 2/125 3.4 - 5.6 2.4 - 2.4 1.4 - 1.5

AVL(3) (s, h, b) 5/135 7.5 - 9.5 5.6 - 7.6 1.8 - 2.3

AVL(4) (s, h, b) 6/136 8.5 - 305.2 6.3 - 80.1 1.9 - 2.3

AVL(5) (s, h, t) 1/148 8.5 1983.1 8.4 5.1 224.0 5.3 2.5 110.6 2.3

RB Tree(1) (s, bh, t) 1/371 1.9 469.0 2.2 1.4 179.1 1.4 0.9 14.5 1.1

Total: 16/1018 34.7 2452.1 339.0 24.7 403.1 101.5 10.0 125.1 11.4

NS→CS/AS (%): 28.9 83.6 70.1 71.1 94.9 96.6

CS→AS (%): 65.3 69.0 88.8

Table 3. Prover Times (in seconds) on Examples with Weakly Linking Components

Spaguetti Heap Arith. Ctr. No Slicing (NS) Complete Slicing (CS) Aggressive Slicing (AS)

(# Vars) Ctr.(K) (DisEq.)(K) Omega Omega(+) Z3 Z3(+) HR Omega Omega(+) Z3 Z3(+) HR Omega Omega(+) Z3 Z3(+) HR

10 8.0 9.0 (0.01) (0.01) 16.7 12.6 24.1 (55.1) (55.6) 2.7 2.3 16.9 3.7 0.2 2.9 0.1 99.6

11 8.8 8.3 (0.01) (0.01) 22.8 16.4 25.9 (49.6) (50.3) 4.0 3.3 19.5 5.4 0.3 4.1 0.2 99.7

12 10.9 7.1 (0.01) (0.01) 34.1 14.2 25.7 (52.4) (53.3) 3.2 2.9 22.0 8.2 0.4 4.3 0.5 99.7

13 11.4 8.6 (0.0) (0.0) 35.5 25.0 26.3 (42.4) (42.6) 5.0 4.5 20.9 9.0 0.3 6.5 0.5 99.7

14 11.6 10.1 (0.0) (0.0) 35.1 28.8 26.6 (32.3) (32.9) 5.4 4.4 20.2 10.1 0.4 5.2 0.4 99.7

15 11.6 12.5 (0.0) (0.0) 42.0 35.0 27.2 (25.8) (26.1) 7.5 7.1 18.9 11.8 0.4 8.7 0.4 99.8

16 10.9 20.3 (0.0) (0.0) 38.3 27.0 27.0 (27.7) (27.7) 6.7 5.4 16.7 8.2 0.4 6.4 0.4 99.8

17 12.8 17.5 (0.0) (0.0) 40.3 41.0 27.2 (25.3) (25.3) 10.2 8.4 16.8 12.4 0.6 9.4 0.5 99.8

18 11.4 30.7 (0.0) (0.0) 39.3 27.7 26.7 (30.9) (30.9) 6.9 6.0 16.2 7.2 0.3 5.8 0.4 99.8

19 12.7 25.6 (0.0) (0.0) 60.5 42.6 27.5 (27.4) (27.4) 10.7 8.8 16.0 12.9 0.4 9.5 0.4 99.8

20 14.1 21.0 (0.0) (0.0) 89.4 62.2 28.3 (19.9) (20.0) 16.6 13.2 18.9 20.5 0.9 15.4 0.7 99.9

Actual/Estimated: 124.2 170.7 - - 454.0 332.5 26.6 24025 23713 79.1 66.4 18.5 109.5 4.6 78.2 4.4 99.7

NS→CS/AS (%): - - 76.2 80.0 - - 82.8 98.7

CS→AS (%): 99.5 99.9 1.2 93.4

Table 4. Prover Times in seconds (or % completed) for the Spaguetti Benchmark. (+) indicates caching used; HR denotes Cache Hit Rate
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